Friday, 24 April 2009

PROJECT EULER #69

Link to Project Euler problem 69

Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.

n Relatively Prime φ(n) n/φ(n)
2 1 1 2
3 1,2 2 1.5
4 1,3 2 2
5 1,2,3,4 4 1.25
6 1,5 2 3
7 1,2,3,4,5,6 6 1.1666...
8 1,3,5,7 4 2
9 1,2,4,5,7,8 6 1.5
10 1,3,7,9 4 2.5

It can be seen that n=6 produces a maximum n/φ(n) for n ≤ 10.

Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.

Brute-forcing the totients up to a million would take hours (?) so I found a more elegant formula:
\varphi(n)= n \cdot \prod_{p|n} \left( 1-\frac{1}{p} \right)


using System;
using System.Collections.Generic;

namespace project_euler
{
class Program
{
private static List<int> primes = GeneratePrimes((int)Math.Sqrt(1000000));
static void Main()
{
//Problem 69
DateTime start = DateTime.Now;
double max = 0;
int number = 1;
for (int i = 1000000; i >= 2; i--)
if (i / Totient(i) > max)
{
max = i / Totient(i) > max ? i / Totient(i) : max;
number = i;
}
Console.WriteLine(number);
TimeSpan time = DateTime.Now - start;
Console.WriteLine("This took {0}", time);
Console.ReadKey();
}

public static double Totient(int n)
{
double totient = n;
var primeFactorsOfN = new List<int>();
foreach (int i in primes)
{
if (n % i == 0 && n != i) primeFactorsOfN.Add(i);
if (i > Math.Sqrt(n)) break;
}
foreach (int i in primeFactorsOfN)
totient *= 1 - 1 / (double)i;
return totient;
}

public static bool IsPrime(int n)
{
if (n < 2) return false;
if (n == 2) return true;
for (long i = 2; i <= Math.Sqrt(n); i++)
if (n % i == 0) return false;
return true;
}

public static List<int> GeneratePrimes(int n)
{
var primes = new List<int> { 2, 3 };
for (int i = 5; i <= n; i += 2)
if (IsPrime(i))
primes.Add(i);
return primes;
}
}
}

No comments: