Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
Triangle | Tn=n(n+1)/2 | 1, 3, 6, 10, 15, ... | ||
Pentagonal | Pn=n(3n-1)/2 | 1, 5, 12, 22, 35, ... | ||
Hexagonal | Hn=n(2n-1) | 1, 6, 15, 28, 45, ... |
It can be verified that T285 = P165 = H143 = 40755.
Find the next triangle number that is also pentagonal and hexagonal.
using System;
namespace ProjectEuler
{
class Program
{
static void Main()
{
//Problem 45
DateTime start = DateTime.Now;
for (double i = 1; i < 1000000; i++)
{
double triangle = i/2*(i + 1);
for (double j = 1; j <= i; j++)
{
double pentagonal = j/2*(3*j - 1);
if (triangle == pentagonal)
{
for (double k = 1; k <= j; k++)
{
double hexagonal = k*(2*k - 1);
if ( triangle==hexagonal&&triangle>40755)
{
Console.WriteLine(triangle +" "+ pentagonal +" "+ hexagonal);
TimeSpan time = DateTime.Now - start;
Console.WriteLine("This took {0}", time);
Console.ReadKey();
}
}
}
}
}
}
}
}
No comments:
Post a Comment