There are exactly ten ways of selecting three from five, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, and 345
In combinatorics, we use the notation, 5C3 = 10.
In general,
nCr = | n! ______ r!(n-r)! | ,where r <= n, n! = n*(n-1)*...*3*2*1, and 0! = 1. |
It is not until n = 23, that a value exceeds one-million: 23C10 = 1144066.
How many, not necessarily distinct, values of nCr, for 1 <= n <= 100, are greater than one-million
My first effort, using the BigInt class, used 25 seconds so I found a much better way using Pascal's Triangle (of course):
effort #1:
using System;
namespace ProjectEuler
{
class Program
{
static void Main()
{
//Problem 53
DateTime start = DateTime.Now;
int count = 0;
for (int i = 22; i < 101; i++)
{
BigInt n = FactorialBigInt(i);
for (int j = i; j > 0; j--)
{
BigInt r = FactorialBigInt(j);
BigInt s = FactorialBigInt(i - j);
BigInt result = n / (r * s);
count += result > 1000000 ? 1 : 0;
}
}
Console.WriteLine(count);
TimeSpan time = DateTime.Now - start;
Console.WriteLine("This took {0}", time);
Console.ReadKey();
}
public static BigInt FactorialBigInt(int n)
{
n = n == 0 ? 1 : n;
BigInt factorial = 1;
for (int i = 1; i <= n; i++)
{
factorial *= i;
}
return factorial;
}
}
}
effort #2:
using System;
using System.Collections.Generic;
namespace ProjectEuler
{
class Program
{
static void Main()
{
//Problem 53
DateTime start = DateTime.Now;
int count = 0;
List<int[]> pascT = new List<int[]>();
for (int i = 0; i < 101; i++)
{
int[] line=new int[i+1];
pascT.Add(line);
}
pascT[0][0] = 1;
for (int i = 1; i < pascT.Count; i++)
for (int j = 0; j <= i; j++)
if (j == 0 j == i)
pascT[i][j] = 1;
else if (pascT[i - 1][j] + pascT[i - 1][j - 1] >= 1000000)
{
pascT[i][j] = 1000000;
count++;
}
else
pascT[i][j] = pascT[i - 1][j] + pascT[i - 1][j - 1];
Console.WriteLine(count);
TimeSpan time = DateTime.Now - start;
Console.WriteLine("This took {0}", time);
Console.ReadKey();
}
}
}
No comments:
Post a Comment